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ABSTRACT

Tracking data from a significant number of strongly resonant satellites

have not yet been incorporated into recent comprehensive geopotential solutions.

This data furnishes excellent comparative and absolute tests of these solutions

for resonant coefficients of order (m) 2, 3, 4, 9 and 14. Tracking arcs of from

1 month to 6 years are examined on seven satellites of 1 rev/day, three of 2

revs/day, and one each of 9 and 14 revs/day. Current values for these fully

normalized resonant coefficients as judged by this independent and sensitive

data, range in accuracy from 0. 02 X 10 to 0. 05 X 10 6. This represents an

increase in accuracy by a factor from 3 to 5 over solutions current in the mid

1960's.
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THE ACCURACY OF GEOPOTENTIAL SOLUTIONS FROM

RESONANT SATELLITE DATA

INTRODUCTION

The National Satellite Geodesy Program (NGSP) has as one of its goals,

the determination of the geopotential to degree and order 15. The accuracy with

which this should be accomplished was not specified. However, a widely quoted

error goal(l)of no more than 0. 2 mgal at the earth's surface per spherical har-

monic coefficient, would provide about 3 mgals error over the full set through

15th degree. These requirements are more severe for the high degree poten-

tial coefficients, because of the greater sensitivity of gravity anomalies to the

short wavelength terms. For example, with the above error budget, the accuracy

requirements range from 20 X 10 for 2nd degree to only 1.4 X 10 for 15th

degree terms. Il l How severe is the total error budget? A simple calculation

using Kaula's rule for the normalized potential coefficients (10 -5/degree 2 ) shows

that the root mean square anomaly for this full set is only about 18 mgals. To

leave an error of 3 mgals implies an overall determination to an accuracy of

about 20%, which is quite modest. Yet comparisons of recent satellite-

gravimetry combination models among themselves and with unused surface

data show discrepancies of 8 mgals on average.(2), ( 3 ) In terms of potential coeffi-

cients (fully normalized), these comparisons show differences(4)of the order of

5 X 10 - 8 (rms) which meets the accuracy requirement for only as far as 5th

degree harmonics. It is clear that overall, the determination of the (15, 15)
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field is still far from adequate. Nevertheless, it is reasonable to enquire

whether some parts of the field are better determined than others compared to

the apparent overall average accuracy figure of 5 X 10 . But there are (in

general) only two classes of harmonic terms for which we can make absolute

accuracy judgments. These are the zonal harmonics which alone have secular

effects on all satellite orbits, and the resonant harmonics (of specific orders)

which have characteristic long period effects on orbits commensurate with the

earth's rotation. A previous study by the author (5 ) has shown that the individual

zonal harmonics of degree less than 11 are now known individually to an accu-

racy of better than 2 X 10 . This satisfies the stated accuracy requirements

for the NGSP. The present study examines the absolute accuracy of certain

well observed resonant harmonics on orbits and data which have not yet been

incorporated into geopotential solutions.

The orbits examined are of 1, 2, 9 and 14 revolutions per day. The highest

altitude orbits of these are dominated by resonance with the (2, 2) harmonic,

though the effect of other higher degree and order terms are observable. The

lower altitude 9 and 14 revs/day orbits have no single dominant resonant

harmonic.

The geopotential fields evaluated in this study are representative of the

best satellite and combination fields produced in the last 6 years using a

variety and diversity of satellites, data types and solution methods. Their

characteristics are summarized in table 1. The SAO SE 1 is the M1 field of
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the 1st Smithsonian Standard Earth6) It is complete through degree and order 8

with selected higher degree terms to (16, 14). This field includes the strong

9th order-resonance from Telstar 1, but only its influence on (15, 9). The

APL 5. 0 (1967) is perhaps the best doppler only field yet published. (7 ) It is

nearly complete through (12, 12) with selected higher degree resonant terms

(none of 9th order). The SAO SE2 field is the 2nd Smithsonian Standard Earth,(2)

complete through (16, 16) with selected higher degree terms to (22, 14). How-

ever it does not contain data from the strong 9th order resonant Telstar 1 orbit.

The (Goddard Earth Models) GEM 3 and 4 fields do contain this orbit informa-

tion.(8) GEM 3 is complete through (12, 12) and GEM 4 through (16, 16), both

with selected higher degree terms to (22, 14).

DATA PROCESSING

24 Hour Satellites

The data employed in this field accuracy study are mainly sets of long arcs

of Kepler mean elements for the resonant satellites, determined by various

agencies from different kinds of "raw" tracking data. Arc spans range from 1

month to over 6 years. The simple idea of the study was to see how much of

the total resonant effect in this data could be explained by the 5 chosen geopo-

tential fields. The unexplained amount, expressed as a percentage of the total,

should be a direct measure of the error in the set of resonant coefficients for

that field. For the deeply resonant (librating) 24 hour satellites, most of the

arcs have nearly stationary ground tracks. Many of the best of these allow

precise accelerations to be calculated by fitting the semimajor axis and longitude
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data to a model which adjusts the (2, 2) harmonic by a "least squares" pro-

cess. The model trajectories are calculated by numerical integration of the

LaGrange planetary equations for mean elements.(9) Subsequently, the longitude

accelerations are calculated from the adjusted (2, 2) values by a formula for

orbits with stationary ground tracks.'0° ) It should be noted that this formula

shows that (2, 2) accounts for about 80% of the resonant acceleration on the 24

hour satellite. The longitude (X) is defined as (M + co)/n + N-Oe where M is

the orbits mean anomaly, X is its argument of perigee, n its mean motion

integer in revolutions/day, N is its right ascension of the ascending node and

e¢ is the hour angle of Greenwich.

The precisely measured accelerations were compared to values computed

by the formula using the 5 fields. The results are given in table 2 and displayed

in figure 1. The measured data on Skynet (from R. H. Merson) is from radar

range and angle tracking using a numerical program which adjusts (by least

squares) the (2, 2) harmonic directly to the tracking data.( " ) The ATS 3 data

was derived in a similar way directly from radar range and range rate data. (12 )

Where the orbits are not sufficiently stationary, the full resonance effect is

taken to be the rms residual in longitude, mean anomaly or semimajor axis

from a trajectory fitted by least squares to these observed elements by a model

without resonant geopotential coefficients. The results of these orbit determina-

tion tests on two very long (nonstationary) arcs of SYNCOM 2 and 3 are shown in

table 3. The observed longitudes for these arcs are displayed in figures 2 and
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4. For SYNCOM 2, the longitude in this arc librates over an amplitude of only

10° providing a fairly local test of the field. For SYNCOM 3 on the other

hand, the longitude span is worldwide. Residuals in longitude for the best

fitting GEM 4 and SAO SE2 trajectories are shown in Figures 3 and 5. In both

of these tests (local and worldwide) the superiority of the GEM 4 solution is

evident.

12 Hour Satellites

The satellites INTELSAT 2F1 (1966 96A) Cosmos 41 rocket (1964 49E) and

Molniya 11(1969 35A) are all well observed deeply resonant 12 hour satellites. Cal-

culation shows (with the formula for stationary orbits ( ° 0)) that (2, 2) accounts for

about 60% of the acceleration of the 18° inclined INTELSAT 2F1 and about 65 %

on the near critically inclined Cosmos and Molniya orbits. The INTELSAT

orbit has been observed over a full range of both longitude and argument of

perigee (figure 6). On the other hand the Cosmos 41 rocket orbit, while deeply

librating over almost all longitudes has had only a limited perigee sampling

(figure 8). The Molniya 11 orbit is even a more limited test of the field, librat-

ing over an amplitude of only 15° (figure 10) with an even more restricted apsi-

dal rotation. The results of orbit determinations with the 5 historic fields for

these long 12 hour arcs (using all 6 Kepler mean elements to fit the trajectories)

are shown in tables 4 to 6. Only the rms residuals in the 2 elements most sen-

sitive to the resonance (semimajor axis and mean anomaly) are shown. Also

shown (as in table 3) are rms along track residuals, calculated as AM X a where
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M is the rms mean anomaly residual in radians and a is the orbits semimajor

axis in kilometers. It is clear, from this statistic, that a good set of resonant

coefficients is essential to maintain long term tracking accuracy on these satel-

lites. Figures 7 and 9 give residuals in mean anomaly for the best fitting GEM

4 and SAO SE2 trajectories to the INTELSAT 2F1 and Cosmos 41 rocket data.

Again, the superiority of the GEM 4 solution to the SAO SE2 (as indicated in

tables 4 and 5) is evident. The results for Molniyall are interesting, with

poorer GEM solutions, relatively. They show that for local sampling the

order of superiority of these fields is unpredictable. But this was also the

case with the precise accelerations on 24 hour satellites, where a few measure-

ments were best predicted by the earlier SAO SE 1 and APL 5. 0 fields.

2-2/3 Hour (9 Revs/Day) Satellite

The satellite 1970 103B, Cosmos 382 Rocket, was found to be in a deeply

resonant orbit with 9th order terms in the geopotential. When the orbit mean

motion was well established, a great number of strong effects with a wide

range of distinct frequencies were estimated using first order perturbations (' 3 )

(table 7). The observed semimajor axis of this orbit over 1-1/2 years since

launch is shown in figure 11A. Also shown is a trajectory for this orbit with

only radiation pressure, drag, zonal geopotential and luni-solar gravity effects

included. Radiation pressure is a significant influence on the eccentric orbit,

but the estimated resonance effects (on the order of 50 m maximum) is cer-

tainly seen even in this relatively inaccurate NORAD data. Table 8 shows the
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results of best fitted trajectories through all the NORAD data for the 5 test fields

including their 9th order resonant coefficients. Because of the high correla-

tion of the radiation pressure with the resonant coefficients a fixed value of CR

was used in these tests. This value was determined (without prejudice to any

field) simultaneously with a clean resonant solution for (9, 9) - (12, 9) using

this data. Figure 11B shows the semimajor axis evolution from the best fitted

GEM 4 and SAO SE2 trajectories. The GEM 4 solution is dramatically closer

to the data. The fact that GEM 4 contains data from TELSTAR 1, a fairly

strong 9th order resonant orbit, while SAO SE2 does not, may account for this

result.

14 Revolutions/Day Orbit

The recent launching and close tracking of ERTS 1 has provided very

accurate mean element data to test the generally well represented 14th order

resonant coefficients of the historic fields. This data was supplied by Arthur

Fuchs of Goddard Space Flight Center. The orbits were determined (nearly

every day) mainly from accurate unified S band two way range and range rate

observations. Initial estimates gave the resonance effect on the semimajor axis

at a level of about 15m (table 9). The observed variation (after drag is removed)

is seen to be closer to 5m (figure 12). But as table 10 (and figure 12) show, the

SAO SE2 field is able to remove all but about 1/3 of the resonant variation. The

residuals also show the small effects of 28th order harmonics. The poorly rep-

resented 14th order harmonics of the APL field gives a result which is actually
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worse than a non resonant field. This is similar to the result for SAO SE2 and

APL 5. 0 on the previous 9th order resonant orbit. Figure 13 shows that the in-

clination, while not as well determined as the semimajor axis, also shows sig-

nificant 14th order resonance effects which are fairly well modeled by the SAO

SE2 field.

SUMMARY OF RESULTS

Precise 24-Hour Accelerations

The GEM 3/4 resonant terms explain all but about 0. 3 % of the data (table

2). If this error were distributed among the resonant terms according to their

-8
dominance, a shift of the order of 0. 5 x 10 in the (2, 2) harmonic of these

fields (in normalized coefficients), would be necessary to completely explain

the accelerations. These accelerations are worldwide.

Syncom 2 and 3 Long Arcs

GEM 3/4 can explain all but about 1% of the resonant effect in these arcs.

A shift of from 2 to 4 x 10 in (2, 2) is required to explain its propor-

tion of the error (80%). The lower number applies to the worldwide sample on

Syncom 3. However the Syncom 2 sample is for a very limited libration with

small acceleration. In addition, the Syncom 3 data is so poor that the "noise

only" (resonant) solution is only marginally superior to the GEM solutions.

Therefore, the overall 24 hour satellite results seem to imply an error of no

more than 2 x 10 in the dominant low order coefficients.
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12-Hour Satellites

In the case of INTELSAT 2F1, a thorough worldwide sample of the field,

GEM 3/4 can account for all but about 0. 3% of the sensitive resonant data.

Here, an error of less than 0. 5 X 10 is implied in (2, 2), because it accounts

for only 60 % of the total acceleration.

In the case of the Cosmos 41 rocket data, a more limited but worldwide

sample, GEM 3 can account for all but about 1. 0% of the resonant data varia-

tion. An error of about 2 X 10 in (2, 2) (which accounts for 65% of the

total acceleration) is implied.

In the case of the very limited field sample on Molniyall, GEM 3/4 can

account for all but about 6. 5 % of the resonance. This would imply a shift of

11 X 10 -
8 in (2, 2) if 65% of the error were assigned to it. But since this is a

shallow libration and a very small sampling of the field, this local error is not

unreasonable.

12- and 24-Hour Satellites--Combined Solution

The overall conclusion from the tests on these orbits is that the low order

resonant constants from the recent GEM solutions [ (2, 2) dominating, but in-

cluding (3, 1) (3, 3), (4, 2), (4, 4) and others with less certainty] are accu-

rate as a set to better than 3 X 10 - . In particular (2, 2) is undoubtedly known

alone to better than 2 X 10-8. As a test of this estimate, all the 12- and 24-hour

data has been processed through the Rapid Orbit Analysis and Determination

(ROAD) program.(9) One simultaneous adjustment of all the resonant coefficients
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through (6, 6) which removed almost all of the resonant effects from the data,

is shown in figure 14 for (2, 2) to (4, 4). There is unfortunately considerable

correlation among the coefficients in this solution so that, for example, S4, 2

though close to the APL value, appears to be quite unrealistic. However, the

other coefficients seem reasonable. In fact the rms of the differences between

the GEM 4 coefficients and this set, through (4, 4), excluding S42 is only

2. 2 X 10-8: It does appear that the set of low order and degree resonant coeffi-

cients to (4, 4) is known to better than 3 X 10-
. It also seems reasonable to

extend this judgment to all the nonzonal coefficients through (4, 4) since they

are as well observed by the ordinary geodetic satellites as these special har-

monics.(l) In fact, Ron Kolenkiewicz ( 14 ) has shown from analysis of short period

effects in laser residuals on the BE-C satellite that they can be removed by an

average adjustment of (4, 3) of only 1 X 10-
8 from the SAO SE2 values. Since

the correlations involving the low order and degree coefficients in the large geo-

detic solutions is small, (8) it is probably safe to generalize these results and say

that each nonzonal coefficient through (4, 4) is now determined to better than

3 X 10- 8

9th Order Resonant Satellite

From table 8, the GEM solutions explain all but about 40% of the resonant

data. From table 7, the resonant coefficients from (10, 9) through (14, 9) domi-

nate about equally on the orbit. Conservatively assigning the full data error to

each such coefficient results in coefficient errors of from 4 to 6 X 10 . It
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seems-safe 'to assume that'the: GEM 9th order' coefficients are accurate to'

bet't'e'r than'5 X. 10- 8; 

14th Orde'r Re'sonant Satellite

-The latest:geopotential soluitions' explain all but about 35% of the observed

14th order variation. : Table 9 shows that almost all of this variation should be

due to (15,' 14). Assigning all of the data error to (15, 14) implies the SAO SE2

value is in error by 1. 2 X 10 - 8 . Actually, the rms of order 14 coefficient

-8
differences-between SAO SE2 and GEM 4, is 2 X 10 . The conclusion is clear

that the well observed 14th order harmonics are known, at least as a set, to

-8
better than;2 X':10. '

Accuracy of Mid-19601s' Solutions-

The SAO SE1 and APL 5. 0 fields are used to judge the general accuracy of

solutions in this time period. For the precise 24-hour satellite accelerations,.

the SAO SE1 is accurate to within about 2. 7% (table 2), 'implying an'error. of

about 7 X 10 in, (2, 2). An improvement of about 3-1/2 is noted for the more

recent GEM solutions. For the long Syncom 2 and 3 arcs, SAO SE1 explains all

but'about 4 %' of the data' (table 3). An improvement of about 4 is noted for the

most recent solutions.

For'the global 12 hour satellite arcs, ' SAO SE1 explains all but 1. 6% of

the INTELSAT _2'F1 data and APL 5. 0 explains all but 1. 7% of the Cosmos'41'

rocket libration'r: (tables: 4 .and 5)'. The most- recent :solutions are 3 to 5 'times

improved over the mid 1960's fields.' The 9th orderresonant term (15, 9) of
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the SAO SE1 explains essentially none of the resonance of the Cosmos 382

rocket arc. It is unfortunate that more 9th order effects were not included in

this field because they do influence the orbits of Midas 4 and especially

TELSTAR 1, used in this solution. The GEM solutions using essentially the

same orbital material have achieved a satisfactory reproduction of the Cosmos

382 rocket resonance. The SAO SE2 field includes no TELSTAR 1 data and,

as a result, shows a poor recovery of the Cosmos resonance. Summarizing,

the GEM fields represent an improvement of about 2-1/2 over the 1966 SAO SE1

solution with respect to 9th order coefficients.

The SAO SE1 was not tested on ERTS 1, but because it is well represented

by 14th order resonant orbits (table 1) it would be expected to perform as well

as the more recent fields.

CONCLUSIONS

If a goal of 3 mgal total error budget is accepted for the total gravity field

through (15, 15), this goal has not yet been reached by the NGSP. However,

significant progress has been made towards this goal since the mid 1960's and

for certain sets of coefficients the goal has apparently been reached. These

sets include the zonals to at least degree 10 and the low order and degree co-

efficients to at least (4, 4). In addition the resonant coefficients of 14th order,

with many well observed satellite orbits, have been shown to probably just

satisfy this goal. It is also probable that the equally well represented resonant

coefficients of 13th order satisfy the above NGSP goal. An improvement in 2nd,

12



3rd, 4th and 9th order resonant coefficients of from 3 to 5 is noted over fields

current in the mid 1960's. Nevertheless the bulk of the coefficients between

5th and 12th degree are still not sufficiently well determined in terms of the

surface anomalies they give rise to.

VN
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Table 1

Gravity Fields used in Orbit Comparisons

TOTAL NUMBER OF
SOLUTION NUMBER RESONANT SATELLITES

FIELD DATA USED METHOD OF DISTINCT OF ORDER:
SATELLITE

ORBITS 9 14

SAO SE 1 SATELLITE-OPTICAL ANALYTIC 14 1 7
(1966)

APL 5.0 SATELLITE-DOPPLER NUMERIC- 7 0 1
(1967) ANALYTIC

SAO SE 2 SATELLITE-OPTICAL, ANALYTIC 19 1 8
(1970) LASER; GRAVIMETRIC

GEM 3 SATELLITE-OPTICAL, NUMERIC 25 2 9
(1972) LASER, ELECTRONIC

GEM 4 SATELLITE-OPTICAL, NUMERIC- 25 2 9
(1972) LASER, ELECTRONIC: ANALYTIC

GRAVIMETRIC

Table 2
Precise Accelerations on 24 Hour Satellites

ORBITS: a = 6.6105e.r., · < .001, n " 1 REV./DAY

WEIGHTED RESIDUALS, (0 - C)/o, COMPUTED
FROM:

SATELLITE X I . o (' G) GEM4 GEM 3 SE 2 APL SE 1 RESO-
(DEG'S) (DEG'S) (10'- RAD/ (10- 8 RAD/ NANT

SID. DAY2 ) SID. DAY 2) FIELD

SKYNET 1,1 39.58 217 3.0553 5.0 4.0 2.9 6.4 5.4 15.4 .3
SKYNET 1,5 45.64 1.36 2.8409 1.6 11.4 .1 16.2 8.4 32.1 .4
SKYNET 1,7 50.04 1.21 2.5865 1.8 7.4 4.6 9.8 - 0.4 15.4 .5
ATS3, 1 314.90 0.29 -23140 4.0 - 6.3 - 4.7 -10.0 - 3.0 - 31.2 .5
INTELSAT 2 F4, 1 181.20 0.90 1.9139 14.8 1.4 1.8 3.1 5.6 0.5 .0
ATS5 105.04 1.06 -0.0112 0.4 12.0 - 8.8 - 1.5 -108.8 154.8 1.5
INTELSAT 2 F3, 1 350.00 1.00 0.13965 2.6 - 1.1 1.2 8.0 14.0 17.5 -1.9
INTELSAT 2 F3, 2 347.50 1.10 -0.0925 4.6 1.0 2.4 5.7 9.3 9.1 1.1
SYNCOM 3, 11 167.40 0.60 0.6084 5.0 0.7 1.4 6.0 16.5 1.3 -2.6
SYNCOM 2, 8 65.90 31.85 0.9763 284 - 1.0 - 1,.1 - 1.3 - 4 - 2.2 -1.0

SYNCOM 3, 14 158.40 250 -0.3834 7.2 1.1 1.6 4.2 11.9 3.5 . .2
ATS 3,4 285.20 0.50 -04.837 24 - 3.8 -7.3 - 9.1 - 21.7 4.0 -4.7
STATISTICS: RMS,MEASUREMENTS-.2.25 RMS RESID.- 7.4 5.9 10.0 41.9 59.9 2.2

COMMENTS: (10RAD./ DAY2 I

RMSMEASUREMENT o - 1.3 x 104 R/D2

= I 12/Z (ia()2]'

RMS RESIDUAL = RMS RESIDUAL

I[ (WEIGHTED RESIDUALS) 2 /Z (l/a)2l x 100/ .33 .26 .44 1.9 2.7 .10
RMS MEAS.

SKYNET MEASUREMENTS ARE FROM R. H. MERSON. SYNCOM, INTELSAT AND ATS 5 MEASUREMENTS WERE
COMPUTED BY THE ROAD PROGRAM FROM KEPLER ELEMENT DATA. ATS 3 MEASUREMENTS WERE COMPUTED
BY THE GEODYN PROGRAM FROM RADAR RANGE AND RANGE RATE DATA. THE RESONANT FIELD INCLUDES
ALL RELEVANT TERMS THROUGH (5,S6) AND USES DATA FROM ALL THE ABOVE SATELLITES EXCEPT ATS 3,4.

16



Field Tests on Two

Table 3

Long 24 Hour Satellite Arcs

SYNCOM 2 SYNCOM 3
(DATA SPAN: 1300 DAYS, I - 310) (DATA SPAN: 1900 DAYS, I - 4° )

FIELD USED RMS LONGITUDE RMS ALONG RMS LONGITUDE RMS ALONG
IN ORBIT RESIDUAL RMS x 100/ TRACK RESIDUAL RESIDUAL RMS x 100/ TRACK RESIDUAL

DETERMINATION (DEGREES) NON RES. RMS (KM) (DEGREES) NON RES. RMS (KM)

GEM 4 (1972) 0.096 1.2 71 0.187 .8 138
GEM 3 (1972) 0.101 1.3 74 0.200 .8 148

SAO SE 2 (1970) 0.236 3.1 174 0.307 1.2 227
APL 5.0 (1967) 0.502 6.5 370 0.750 3.0 554

SAO SE 1 (1966) 0.574 7.4 422 0.254 1.0 188
NON RESONANT 7.75 100.0 5680 25.0 100.0 10300

RESONANT 0.040 .52 30 * 0.134 .5 99

COMMENTS: ONLY SEMIMAJOR AXIS AND LONGITUDE (M + w + N - 6e) DATA USED IN ORBIT DETERMINATIONS. ALL RESONANT
EFFECTS THROUGH (5,5) USED EXCEPT FOR NON RESONANT'FIELD TEST. RESONANT FIELD HAS ADJUSTMENT FOR TERMS
THROUGH (4,4).

DATA IS FROM DOD, RANGE & RANGE RATE
TRACKING.

DATA IS FROM DOD, RANGE & RANGE RATE
TRACKING (MJD 39665-40175), NASA X-Y ANGLE
TRACKING (OF BEACON), MJD 40833-41580.

17
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Table 4

Field Tests on'Intelsat 2F1, 1328 Day Arc

ORBIT: a -= 4.165e.r., e
REVS

= .64, I = 180, n - 2
· -DAY.

18

RMSM RMS
FIELD USEDRMS RESID .x 100/ ALONGSEMIMAJOR AXIS MEAN ANOMALY

IN ORBIT RNON RES. TRACKRESIDUAL RESIDUALDETERMINATION . RMS M RESIDUAL
(in) (DEGREES) RESID. (KM)

GEM 4 (1972) 241 0.26 0.33 120
GEM 3 (1972) 237 0.25 0.32 118

SAOSE 2 (1970) 247 0.47 0.60 217
APL 5.0 (1967) 696 1.58 2.03 730

SAO SE 1(1966) 507 1.25 1.60 580
NON RESONANT . . 9650 78.00 100.00 36100

RESONANT 228 .04 0.05 17

COMMENTS: DATA SPAN: MJD 40059-41387 ORBIT DATA USED: 131 SETS OF
BROUWER MEAN ELEMENTS FROM MINITRACK OBSERVATIONS
OVER ABOUT ONE WEEK OF OBSERVATIONS PER SET. RADIATION
PRESSURE EFFECTS INCLUDED; CR = 1.08, A/M =.1 cm2 /gm. FOR
RESONANT FIELDS, ALL GEOPOTENTIAL EFFECTS ARE INCLUDED
GIVING AT LEAST 0.005 OF MAXIMUM ACCELERATION (M) DUE TO
(2,2): FROM (2,2)---(11,2), (4,4)--(11,4), AND (6,6)- (13,6). THE
RESONANT FIELD IS GEM 4 WITH ADJUSTED COEFFICIENTS FOR
(2,2), (3,2), (4,2) AND (5,2).



*! Table 5

Field Tests on Cosmos: 41 'Rocket [1966 49'3],) 2298 Day Arc

--.. ,ORBIT: .a,::= 4.16e.r:; :e = .69, I .:680, :n 2 · REVS.: 
· ~:' -. :~~~ :',DAY

19

RMS M RMS
cFIELD USED: R RMS RESID. x. 100/ ,' :.ALONGOSEMIMAJOR AXIS. . MEAN ANOMALYRES... TRACK'.,j:IN0RBITNON RES. i ::TRACK

DETERMINATION RESIDUARMSM .D' ,.RESIDUAL
(mi) '." ,(DEGREES) RESID. (KM)

GEM 3 (1972) 543 1.31 1.0 607
SAO SE 2 (1970) 797 2.43 1.9 - 1125

API. 5.0 (1967) 1148 4.43 2.5 2051
NONR ESONANT 49112 127.5 100.00 118088

RESONANT 478 .20 0.2 37

COMMENTS: DATA SPAN: MJD 39157 41455. ORBIT DATA USEDi:'302 SETS OF NORAD MEAN
ELEMENTS FROM RADAR SKIN TRACKING. RADIATION PRESSURE AND DRAG EFFECTS -
INCLUDED: A/M=-;1 cm2 /gm. FOR RESONANT FIELDS, ALL GEOPOTENTIAL EFFECTS ARE
INCL;UDED;GIVING AT'LEAST 0.005 OF-MAXIMUM ACCELERATION (M) DUE TO (2,2): FROM
(2.,2):-.(8,2,(4,4) ~ (9,4), (6,6), - (15,6), (8,8) - (16,8) AND (10,10)'-, (14,10). THE RESONANT
FIELD IS GEM;4,WITH ADJUSTED COEFFICIENTS FOR (2,2), (4,4), (6,6); AND (8,8).

I . ' ' :! , . .: .,: ., ,

. . _ ,. . . . _ _ . . _ ~ .~ I 



Table 6

Field Tests on Molniya 11, 519 Day Arc

ORBIT: a = 4.16, e = .71, I
REVS

= 650, 160 < X < 480, n 2 2D
DAY

20

FI DRMS RMS RMS M RMS

IFNELD UO T SEMIMAJOR AXIS MEAN ANOMALY RESID. x 100/ AL
IN ORBITDUAL RESIDUAL NON RES. TRACK

DETERMINATION M RESIDUAL
(m) (DEGREES) RESID. (KM)

GEM 4 (1972) 429 0.92 6.1 424

GEM 3 (1972) 498 1.04 6.9 480
SAO SE 2 (1970) 444 0.75 5.0 347

APL 5.0 (1967) 442 0.68 4.5 314
SAO SE 1 (1966) 494 1.03 6.9 475

NON RESONANT 6610 15.05 100.0 6970
RESONANT 359 0.03 0.2 15

COMMENTS: DATA SPAN: MJD 40556-41075. ORBIT DATA USED: 282 SETS OF NORAD
ELEMENTS. RADIATION PRESSURE AND DRAG EFFECTS INCLUDED:
CR = 1.09, CD = 4.06, A/M = .1 cm2 /gm. FOR RESONANT FIELDS, ALL
EFFECTS ARE INCLUDED GIVING AT LEAST 0.005 OF MAXIMUM ACCEL-
ERATION (M) DUE TO (2,2): FROM (2,2)--(12,2), (4,4)--_(10,4), (6,6)--m
(8,6) AND (8,8). RESONANT FIELD IS GEM 4 WITH ADJUSTED COEFFI-
CIENTS FOR (2,2), (4,4) AND (6,6). FAIRLY HIGH CORRELATIONS EXIST
BETWEEN RESONANT, DRAG AND RADIATION COEFFICIENTS.



Table 7

Estimated Resonance Effects on Cosmos 382 Rocket

ORBIT: a = 1.52313 e.r., e = .18, I = 51.50, n - 9 REVS./DAY

GRAVITY FIELD: J£ m 1.4 x 10 5/Q2: ONLY EFFECTS OVER 010 IN MEAN
ANOMALY LISTED

PERTURBATION AMPLITUDES

TERM BMEAN ANOMALYPERIOD AXIS
(Q, m, p, q) (DAYS) (m(DEGREES)(DAYS) (meters)

14, 9, 8, 3 -704.7 7.0 0.40
12, 9, 7, 3 -704.7 6.3 0.35
16,9,9,3 -704.7 3.1 0.17
10, 9, 6, 3 -704.7 2.3 0.13
13, 9, 7, 2 579.1 24.0 1.10
11, 9, 6, 2 579.1 23.0 1.10
15, 9, 8, 2 579.1 9.0 0.42
9, 9, 5, 2 579.1 ·7.1 0.25
12, 9, 6, 1 205.2 27.0 0.44
10, 9, 5, 1 205.2 24.0 0.42
14, 9, 7, 1 205.2 8.4 0.13
16, 9, 8, 1 205.2 2.1 0.03
11, 9, 5, 0 124.7 32.0 0.32
9, 9, 4, 0 124.7 25.0 0.25
13, 9, 6, 0 124.7 9.8 0.10
15, 9, 7,0 124.7 2.5 0.02
10, 9, 4, -1 87.5 17.0 0.12
12, 9, 5, -1 87.5 6.8 0.05
14, 9, 6, -1 87.5 1.8 0.01
9, 9, 3, -2 68.6 3.6 0.02
11, 9, 4, -2 68.6 2.6 0.02

ROOT SUM OF SQUARES
OF ALL TERMS: 73 1.5
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Table 8

Field Tests on-Cosnios 382 Rocket [1970 103B] Data

22

RMS.
RMS RMS ALONG'

FIELD USE;D ;SEMIMAJOR AXIS MEAN ANOMALY
IN ORBIT TRACKRESIDUAL RESIDUAL

DETERMINATION DUAL - R RESIDUAL
(m) (DEGREES) (KM)

GEM 4 (1972) 11.6 .162 27.5

GEM 3 (1972) 11.3 .158 26.8

SAO SE 2 (1970) 55.0 .690 116.5
APL 5.0 (1968) 68.5 1.460 247.0

SAO SE 1 (1966) 26.3 .438 74.2

NON RESONANT 26.4 .444 75.1

RESONANT 7.9 '.023 3.9

COMMENTS: DATA ARE MEAN KEPLER ELEMENTS FROM DOD
(NORTH AMERICAN AIR DEFENSE COMMAND),
MJD 40928-41355. "MEAN" OFF RESONANT BEAT
PERIOD = 125 DAYS. ORBIT INCLINATION = 51.50
ECCENTRICITY = .18. MINIMUM PERIGEE HEIGHT.
= 1600 KM. RESONANT FIELD HAS ADJUSTED (9,9),
(10,9), (11,9) AND (12,9) COEFFICIENTS (WITH SOME
HIGH CORRELATIONS) AND GEM 4 (13,9,--(16,9)
AND ZONAL COEFFICIENTS. SAO SE 1 HAS NO SIG-
NIFICANT RESONANT EFFECTS ON THIS ORBIT.



EtTable-n.9

Estimated Resonance. Effects .. qnERTS 1

:5 : ORBIT". a = 1.,,42?; e = .0015,,-1 -99.10, n ... 14REVS;,.DAy
..- , GRAYITY .FIELD:, J£ m" 1.4 x 10-5/Q?,: ONLY. E.FFECTSOVER. 0.1 m IN ...

... ,(£ ~.30)~,- ,... ' /-,*' SEMIMAJOR AXIS LISTED ,

BEAT ' PERTURBATION AMPLITUDES
TERM....TE...RM.. - :-PERIOD SEMIMAJOR AXIS INCLINATION--

(Q, m, p, q) (DAYS) (meters) (10-4,DEGREES)-,

. - . '. , ; : ; ' ,.

15, 14, ,7, 0 -18.7 17.0 - : : 9.4 -,.

17, 1,4, 8, 0 -18.7 - 5.9 ; 3.3

19, 14, 9, 0 -18.7 . 1.0 : -'0.6:.:: ;I'

21, 14;- 10, 0 -18.7 0.7 0.4 ' 

23, 14, 11, 0 -18.7 1.0' 0.6

25, 14, 12, 0 -18.7 0.8 0.5

27, 14, 13, 0 -18.7 0.5 0.3

29, 14, 14, 0 -18.7 0.3 0.2

14, 14, 7, 1 -21.8 0.3 0.2

14, 14, 6, -1 -16.4 0.1 0.1

28, 28, 13, 0 - 9.4 0.4 0.2

30, 28, 14, 0 - 9.4 0.4 0.2

RSS: 18.1 10.0

23



Table 10

Field Tests on ERTS 1 [58 day arc]

n ; 14, PRIMARY BEAT PERIOD = 19 DAYS, a = 1.142, e = .0015, I = 99.10

FIELD USED RMS RMS A RMS INCLINATION
IN ORBIT SEMIMAJOR AXIS RESID. x 100/ RESIDUAL

DETERMINATION RESIDUAL NON RES. RMS A (10-4 DEGREES)
(m4) RESID.

GEM 4 (1972) 1.48 37 5.95
GEM 3 (1972) 1.49 37 5.95

SAO SE 2 (1970) 1.31 33 6.70
APL 5.0 (1967) 4.58 114 9.25

NON RESONANT 4.03 100 9.00

RESONANT .30 8

24
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